

Classification paradigm

Accretion rate history

A wide range of outbursts

Outbursts in last decade have started to blur the distinction between FUors and EXors:

- Outburst luminosities reach intermediate values (e.g., HBC 722 with ≈5-12L_{sun}, V2775 Ori with 51 L_{sun})
- Outburst durations in between those of EXors and FUors (e.g., HBC 722, V1647 Ori, OO Ser)
- Embedded objects with EXor outburst characteristics (e.g., V723 Car, V1647 Ori, V2492 Cyg)
 - → A continuum of properties of eruptive young stars? (Audard et al. 2014, PPVI review)

See more recent review (PPVII: Fischer et al. 2023)

Solving the protostellar luminosity problem

Kenyon et al. (1990, 1994)

Dunham et al. (2014)

Models of single isothermal sphere with rotation

$$L = L_* + L_{acc} = \frac{3}{7} \frac{GM_*^2}{R_* t_{KH}} + \frac{GM_* \dot{M}}{2R_*} = L_* \left(1 + \frac{7}{6} \frac{t_{KH}}{t_{acc}} \right)$$

t_{KH}>t_{acc} in protostars → L(protostar)>L(T Tau star) for same mass, in theory

Solving the protostellar luminosity problem

Dunham et al. (2010), Dunham & Vorobyov (2012)

Models with simulated episodic accretion

Episodic accretion may also explain luminosity spread in young clusters (Baraffe et al. 2009, 2012; Jensen & Haugbølle 2017)

YSO variability

Fischer et al. (2023), based on Hillenbrand & Findeisen (2015)

The Gaia DR3 YSO catalogue

Optical variability

Q=0 → seriodic Q>>0 → Stochastic

Accretion processes are stochastic and asymmetric

M=0 → symmetric |M|>0 → asymmetric (burst or dipping)

Mas, Roquette, Audard et al. (2025) submitted

IR + sub-mm variability

FIR Orion Nebula monitoring

Billot, Audard, et al. (2025)

- 38 point-like sources with reliable 70µm flux density
- 18 observations of single 35'x35' region centered on ONC
- Constant speed of 20"/s in zig-zag pattern
- Coverage from 2011-02-25 to 2012-08-27
- PI: N. Billot, OT1_nbillot_1

Far-infrared variability in protostars

Variable protostar

Billot, Audard, et al. (2025)

Non-variable protostar

Significant and frequent variability detectable in protostars

Far-infrared as tracer of accretion

Complementary to accretion tracers in UV (e.g., UVEX)

Fischer et al. (2023b), see also PRIMA GO Book, Battersby+

Outburst chemistry

Episodic accretion events can evaporate ice frozen onto grains

 \rightarrow CO, CO₂, N₂H⁺, HCO⁺, H₂CO time tracers

Vorobyov et al. (2013)

CO ice evaporation in the inner envelope (1000-2000 au)

Snow line

Conclusion

- Accretion in young stars is variable
- Far-infrared regime traces accretion better
- Episodic accretion modifies the disk chemistry
- Snow lines move, ices evaporate

 Young stars are ideal targets for PRIMA to probe accretion variability and its impact on the PP disk

Opportunities in Switzerland

- Swiss SNF Postdoc fellowship
 - independent project 2 years. Similar to Marie Curie fellowship
 - 0-8 yrs after PhD
 - Call 1 Dec 2025 TBC

Feel free to talk to me!

- Swiss SNF Ambizione fellowship
 - independent project up to 4 years
 - Can ask for PhD student
 - < 4 yrs after PhD</p>
 - Call 4 Nov 2025