

Constraining the dust temperature in galaxies as a function of z with PRIMA

Francesca Pozzi

Department of Physics and Astronomy University of Bologna

Main collaborators: A. Traina, M. Costa, F. Calura, L. Bisigello, C. Gruppioni, L. Vallini, V. Casasola, L. Barchiesi

Talk outline

1) Why we care about dust temperature in galaxies

2) 'Things' that we know about dust temperature in galaxies

3) The role of PRIMA

Why we care about dust temperature in galaxies

1. T dust \rightarrow intensity and shape of the stellar incident radiation field

Two phase dust model (Charlot & Fall 2000)

Why we care about dust temperature in galaxies

2. T dust \rightarrow intensity and shape of AGN radiation field

Integrated studies JWST+SPITZER+HERSCHEL

Barro+24 (see also Andonie+2024, Pozzi+12, Gruppioni+16)

See Barchiesi talk

Why we care about dust temperature in galaxies

2. T dust > intensity and shape of AGN radiation field

Integrated studies JWST+SPITZER+HERSCHEL

Barro+24 (see also Andonie+2024, Pozzi+12, Gruppioni+16)

See Barchiesi talk

Resolved studies of NGC1068
ALMA, Garcia-Burillo+16

JWST, Haidar+2024

PRIMA Conference, Marseille 31 March 2025

Francesca Pozzi (University of Bologna)

Things 'we know' about T dust in galaxies

Evolution with z

Caveats:

- Great dispersion, physical or depends on the different assumption?
- Based on galaxies selected in an inhomogeneous way
- Great limits are the number of photometric point

Villanueva+24 (see also Magnelli+13; Schreiber+18; Sommovigo+22)

PRIMA Conference, Marseille 31 March 2025

Things we know about T dust in galaxies

At high-z (z > 5-6) dust warm (T > 60-100 K) in the GMC is expected to dominate due to more compact GMC clouds

Liang+19 (see also Sommovigo, Ferrara+20)

Things we know about T dust in galaxies

The key-role of PRIMA

SPRITZ model

Bisigello+21; Bisigello+24

See Traina, Pozzi et al. PRIMA special issue

- ✓ Phenomenological model starting from IR LF (Gruppioni+13)
- ✓ Star-forming galaxies, AGN, composite system, elliptical, dwarf

✓ Simulated Reference survey with PRIMAger: 1 deg², total integration time 1000 hr $5\sigma = 0.09 - 0.23$ mJy @ 24-230 μ m

 \rightarrow 44000 galaxies detected by PRIMA photometry z=0~6 (reference filter: @60 μ m)

Goals

- Expected number of galaxies with a measured T_{dust} assuming only 1 component
- Examples of T_{dust} estimates assuming 2 components for brighter galaxies

Expected sources with measured T_{dust}

- At least 2 PRIMA points
- Herschel flux limits in COSMOS

 $N_{PRIMA} \sim 8 \times N_{HERSCHEL}$

PRIMA up to SFR $\sim 0.01 \, \mathrm{M}_{\odot} \, / \mathrm{yr}$

PRIMA Conference, Marseille 31 March 2025

Expected sources with measured T_{dust}

 $\log {
m SFR} \left[{
m M}_{\odot} \, / {
m yr}
ight]$

- At least 1 PRIMA point +sub-mm/mm detection
- Herschel flux limits in COSMOS

 $N_{PRIMA} \sim 5 \times N_{HERSCHEL}$

PRIMA up to SFR $\sim 30 \, \mathrm{M}_{\odot} \, / \mathrm{yr}$

 $\log {\rm M_{star}[M_{\odot}]}$

PRIMA Conference, Marseille 31 March 2025

Simulated z ~ 0 galaxy

Pre-PRIMA

PRIMA

Simulated z ~ 0 galaxy

$$\Delta T_{cold} \rightarrow \frac{\Delta T_{cold}}{2}$$

$$\Delta T_{warm} \rightarrow \frac{\Delta T_{warm}}{10}$$

Simulated z~3 galaxy

PRIMA + synergy sub-mm facilities (i.e. ALMA)

Is the dust temperature in AGN the same as in starforming galaxies?

2 dust components key to give an answer

Tripodi+24

Conclusions

- 1) PRIMAger reference cosmological survey: 1deg², 1000 h
- 2) Simulated galaxies / AGN with SPRITZ model
- \rightarrow T_{dust} for 1 dust component for 1 dex fainter sources (in SFR) in comparison to pre-PRIMA missions from z~0 up to z~5
- \rightarrow T_{dust} for 2 dust components for the brighter galaxies (z > 1.5 key synergy with sub-mm/mm facilities)