Warm Dust in the First Few Billion Years

university of groningen

PRIMA Conference Marseille 2 April 2025

The activity history of the Universe linked to star formation

The activity history of the Universe linked to star formation

The activity history of the Universe linked to star formation

The activity history of the Universe linked to nuclear activity

Discrepancies are even larger for the cosmic BHAD at z>3

In contrast to the SFRD, theoretical models predict more activity than observed

Main questions

♦ Are we accounting for all the SF and BH activity at high z?

♦ What are the relative contributions of SF and BH activity to dusty galaxies?

♦ What are the roles of dust-obscured SF and BH activity in the general context of galaxy evolution?

Talk Outline

The need of PRIMA to study the dusty Universe at high z

Warm dust at high z: hints from ALMA and JWST results

Potential of the PRIMAger to study the high-z Universe

Predictions from existing observations

Talk Outline

The need of PRIMA to study the dusty Universe at high z

Warm dust from SF at high redshifts

Dust in galaxies is expected to get warmer with increasing redshift

mainly due to increasing cosmological accretion rates

$$T_{\rm d} \approx (1+z)^{0.42}$$

(Sommovigo+2022)

Sommovigo+(2020)

Rising dust temperature with redshift

some observational constraints suggest that dust temperatures could be even higher

simple extrapolations from known sub-millimetre galaxies may underestimate Td

Hot dust from AGN

a proper characterisation of the AGN dusty torus requires studying λem ~1-15 μm

but this regime comes out of the MIRI bands at high z

The missing observing window: 24-250 microns

PRIMA will be the first *competitive* IR telescope operating between the wavelength domains of JWST & ALMA

based on fig. credit: cen.acs.org

With PRIMA we will obtain the first representative census of warm-dust sources up to the EoR

Talk Outline

Warm dust at high z: hints from ALMA and JWST results

Star-forming galaxies at z~5.5

ALMA (Band 8) constrains the red-side of the IR dust emission SED

The inferred dust temperatures are still uncertain, but suggest Td higher than local value

Warm dust in LBGs at z~7-9

Bakx+(2020)

see also e.g. Walter et al. (2018); Tamura+(2019)

Why detections at shorter IR wavelengths are important

Having insufficient IR SED coverage can lead to wrong (underestimated) Tdust and (overestimated) LIR

QSO host galaxy at z=6.9

IR detections are shorter wavelengths give us information on warm dust

corresponds to an AGN dusty torus and/or central ISM heated by nuclear activity

Meyer+(2025)

Universe age [Gyr]

1.5

1.2

Yang, KC +(2023)

Indicates that BHAD is higher than thought at z=3-5 (includes contribution from composite systems)

10

Little Red Dots (LRDs)

Little Red Dots (LRDs) and similar sources in MIRI

Not all LRDs are detected in MIRI, especially not at the longest wavelengths

A PRIMA galaxy census could help disentangle the nature of the IR brightest cases

Observed Wavelength [μ m]

Talk Outline

Potential of the PRIMAger to study the high-z Universe

Predictions from existing observations

Lessons from Spitzer galaxy surveys

Spitzer (IRAC+MIPS) maps in COSMOS

There are ~90 galaxies at z>3 with Snu(24um) > 150 microJy (over ~1.5 sq.deg)

Tier 1: PRIMA blank survey over ~10 sq. deg.

A PRIMAger blank survey down to ~ 150μJy (30μm) over ~10 sq. deg. would detect at least 600 (200) galaxies at z>3 (z>4)

Critical role to separate SF galaxies and AGN in most luminous sources at z>3

Synergies with Euclid/Roman

e.g., EDFN particularly advantageous (IRAC data)

Integration time (PRIMA ETC): ~1000 h (5σ over two 'bands')

Tier 2: PRIMA blank ultra-deep survey over ~1 sq. deg.

Try to push PRIMA towards the confusion limit

A PRIMAger blank survey down to \sim 60 μ Jy (30 μ m) over \sim 1 sq. deg. would detect **at least** 400 (150) galaxies at z>3 (z>4)

...but due to k-corrections, there will be many more at 60-70 µm

Detect warm dust in the ISM of low-metallicity galaxies

Understand their contribution to cosmic SFRD

Integration time (PRIMA ETC): ~1000 h (for 2 bands at 5σ)

May be a challenge to separate these galaxies in the PRIMA beam

Take home messages

- Dust was warmer in the first few billion years (ISM dust + AGN) expected from theory + observational evidence
- ❖ Lack of constraints on warm dust leads to wrong LIR and Td PRIMA
- ❖ Deep PRIMAger (10 sq.deg.) survey in areas w/Euclid/Roman + IRAC systematic study of dust-obscured nuclear activity in most luminous IR galaxies
- ❖ PRIMAger galaxy surveys down to confusion limit should detect warm dust in hundreds of z>4 galaxies with low metallicities

trace early chemical enrichment and (w/shorter wavelength IR data) disentangle dusty nuclear activity

study contribution to the cosmic SFRD

study contribution to the cosmic BHAD