Dusting off the secrets of cosmos with PRIMA - I\/\ar'seille 31/03-02/04 2025
Modelling infrared line emission
from high-z galaxies
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Cosmological zoom in simulations
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The SERRA cosmological zoom-in simulation

Movie of the SERRA simulation

Pallottini,LV +19,22

model highlights

| Resolution
gasmass  m, ~ 10*M,
AMR ~ 80 — 0.1 ckpc/h
atz =6 Ax =~ 30 pc

* non-equilibrium chemical networks
to form molecular hydrogen and
in turn it into stars
+ radiation field traked on the fly
to account for ionization
and photodissociation effetcs

properties of SERRA galaxies

number: ~1000 (keep growing)
redshift range: 15<z<4
stellar mass: 10" <M,/M_ < 5x10™

UV magnitude:  -21 <M, <-16

FIR luminosities: 10° <L, /L < 10"

[CII] luminosities: 107 <L /L < 10°Lsun
from cosmological to

molecular cloud scales




Resolving the star formation down to GMC scales

log(X, /M. yr1kpc™?)

Pallottini+19,22, Vallini+21



Implementing ISM physics in simulations

log(n/cm=3)
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PDR models
including heating and
cooling in neutral gas

d

[CII], [OI] emission
Vallini+15,17



Implementing ISM physics in simulations

lonization field

PDR models Radiative transfer
including heating and for computing the Hll
cooling in neutral gas region properties and

[CII], [Ol] emission [Olll] 52um,88um

Vallini+15,17 Vallini+21



Linking the star formation and gas surface densities

log(X, /M. yr1kpc™?)

Pallottini+19,22, Vallini+21



Linking the star formation and gas surface densities to line emission

Using tracers of different gas phases to investigate the conversion of gas into stars
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Matching observational constraints

Take into account of observational setup, such as beam size, sensitivity, noise

Pallottini+19,22, Vallini+21



High [OIII]/[CII] ratios at high-z: myth or reality?

See also:

Bakx+24
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High [OIII]/[CII] ratios at high-z: myth or reality?

See also:

Bakx+24
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Explaining the high [OlIl]/[CII] ratios in the EOR

Vallini+21

Resolution of the simulation ~10 pc

UV map [Olll] map [CII] map



Explaining the high [OlIl]/[CII] ratios in the EOR

Vallini+21

Considering the beam smearing of
typical ALMA observations
in the EoR

UV map [Olll] map

Computing > and _



Explaining the high [OIllI]/[CIl] ratios in the EOR

Vallini+21
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Explaining the high [OIllI]/[CIl] ratios in the EOR

Vallini+21
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Explaining the high [OIllI]/[CIl] ratios in the EOR
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Explaining the high [OIllI]/[CIl] ratios in the EOR
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High [OIII]/[ClI] ratios correlate with burstiness
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High [OIII]/[ClI] ratios correlate with burstiness
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High [OIII]/[ClI] ratios correlate with burstiness

Vallini+21

§ MACS1149-JD1 log(Ziom/Zrcm) = a log(ks) +B
A2744YD4

MACS0416-Y1 a=1.04+041

NB1006-2 = —-0.42+0.620—
B14-65666

1 5 " B14-ClumpA

B14-ClumpB
BDF3299

|
1.0t 4‘*‘?",
n211
0.5} S
O
0.0 i st
0.0 0.5 1.0 15 2.0

|og@ ;E

2.0t

The KS relation 3. @ga;-‘*

log(Zomy/Zcny)

O

ZSFR

gas



[Olll]/[Cll] evolves with redshift?

What about the ratios at cosmic noon?

e Large samples of [Ol11]88 and [Olll]52 emitters are needed
e [OIl]63um from PDRs can be used instead of [ClI]158um, if needed



How to bridge the gap between redshifts?
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PRIMA will be key
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Liony =5 X 10° L@ z=1— Flux = 3.5 x 10 W/m’

PRIMA ETC — 0.29 hours

L[OI]63 =5x10’L_@ z=1— Flux = 3.5 x10*° W/m’

PRIMA ETC — 29.47 hours



PRIMA will be key
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Conclusions

1. The ISM properties of the first galaxies are more extreme (higher density,
turbulence) and vary a lot within short timescales

2. Likely the KS relation evolve with redshifts and it seems to be strongly
impcacted by the higher gas density of first galaxies

3. Line ratios of ionized vs neutral gas tracers can track down this evolution

4. PRIMA will provide insights on galaxies at cosmic noon and guide future
developments of zoom-in simulations evolved towards lower redshifts






