Cold Dust Heating Mechanisms in Nearby Galaxies

Vidhi Tailor (INAF - IRA, University of Bologna)

Supervisors: Viviana Casasola, Francesca Pozzi, Francesco Calura

Dust in ISM

Cold ISM

Role of dust

- *Important catalyst for formation of H_2 molecule
- * Affects observation: abs UV/Optical & re-emits at IR/sub-mm

Why study dust heating?

Dust heating regimes:

- Thermal equilibrium Large grains ------- 15 30 K
- Stochastic heating Small grains ———— up to few 1000K

Aim of the Study

- *Dust heating in galaxies due to:
 - i. Diffuse interstellar radiation field (ISRF) from evolved stars
 - ii. Massive Young Stars
 - iii. AGN
- *Previous studies have often focused on two approaches: correlating dust properties with tracers of the ISRF and SF (Boquien et al. 2011; Bendo et al. 2012, 2015), or using integrated galaxy properties to estimate dust parameters (Nersesian et al. 2019)

My study uses spatially resolved properties (T_d, M_d, Σ_{SFR}) , providing more detailed and accurate insights into local dust heating variations.

Aim of the Study

*Previous studies have often focused on two approaches: correlating dust properties with tracers of the ISRF and SF(Boquien et al. 2011; Bendo et al. 2012, 2015), or using integrated galaxy properties to estimate dust parameters (Nersesian et al. 2019)

Aim of the Study

*Previous studies have often focused on two approaches: correlating dust properties with tracers of the ISRF and SF(Boquien et al. 2011; Bendo et al. 2012, 2015), or using integrated galaxy properties to estimate dust parameters (Nersesian et al. 2019)

My study uses spatially resolved properties

 $(T_{\rm dust}, M_{\rm dust}, \Sigma_{\rm SFR})$, providing more detailed and accurate insights into local dust heating variations.

Nersesian et al. 2019

Galaxy Sample

Sample from Casasola et al. (2017) Subset of DustPedia sample

18 large spiral face-on galaxies

Selection criteria:

$$*(d/D)_{\text{submm}} \ge 0.4$$

 $*D_{\text{submm}} \ge 9'$ — 15 resolution elements in SPIRE - 500 μ m maps

Galaxy Sample		
IC 342	NGC 2403	NGC 5055
NGC 300	NGC 3031	NGC 5194
NGC 628	NGC 3521	NGC 5236
NGC 925	NGC 3621	NGC 5457
NGC 1097	NGC 4725	NGC 6946
NGC 1365	NGC 4736	NGC 7793
SFR range $[M_{\odot}yr^{-1}]: 0.2 - 12.97$		
$\log M_* range [M_{\odot}]: 9.29 - 10.99$		

$$(\theta = 36'')$$
0.3 - 3.4 kpc

Derivation of Σ_{dust} and T_{dust}

Tailor et al., in prep

Tailor et al., in prep

Dust Temperature Radial Profiles

Searching for dominant heating mechanism

Searching for dominant heating mechanism

Method 1: Correlating $T_{\rm dust}$ with $\Sigma_{\rm SFR}$ and $\Sigma_{\rm M*}$

Derived using IRAC 3.6 and 4.5 µm (Querejeta et al. 2015)

NGC 3031 / M 81

Method 1: Correlating $T_{\rm dust}$ with $\Sigma_{\rm SFR}$ and $\Sigma_{\rm M*}$

Searching for dominant heating mechanism

Method 2: Based on Utomo et al. (2019)

$$(2.19-1)\log\Sigma_{\mathrm{dust}}+A=(4+1.79)\log T_{\mathrm{dust}}$$
Only free parameter (Utomo et al. 2019)

Young stars are dominant

Young stars are **NOT** dominant

Tailor et al., in prep

Tailor et al., in prep

Comparison between 2 methods

- The two methods agree for 11 out of 18 galaxies.
- The discrepancies arise from:
 - 1. resolution effects
 - 2. assumption of a constant slope for the KS law across galaxies
 - 3. Assumption of a linear relation between $\Sigma_{dust}, \Sigma_{gas}$.
 - 4. Assumption of constant CO-to- H_2 conversion factor.

Towards the Future —

How PRIMA will help?

- \Rightarrow 24 235 μ m range \longrightarrow Warm dust observations \longrightarrow Expected to be linked to recent SF
- → Improved sensitivity in the shorter wavelengths than Herschel
- → Detect the presence of AGN and provide better constraints on their impact on dust

Conclusions

- AGN presence doesn't significantly affect temperature profiles at our sampled spatial scales
- ullet Both $\Sigma_{
 m SFR}$ and $\Sigma_{
 m M_*}$ correlated roughly equally with $T_{
 m dust}$
- Analysis of $T_{\rm dust}$ $\Sigma_{\rm dust}$ relation —— in ~78% of sample young stars are not dominant heating mechanisms.
- Out of the 18 galaxies analyzed, the two methods are consistent in 11 cases.

Looking forward to PRIMA!!

Thank You!