

REVEALING THE INTERPLAY BETWEEN SMBH AND STARBURST ACTIVITY IN THE BRIGHTEST FAR-IR GALAXY IN THE UNIVERSE

FRANCESCO SALVESTRINI INAF - OATS

Collaborators

- M. Bischetti UniTs
- C. Feruglio INAF OATs
- F. Fiore INAF OATs
- S. Bianchi INAF OAA
- S. Gallerani SNS
- F. Di Mascia SNS
- P. Barai INAF OATs

Fundings

- INAF MiniGrant ECHOS (Salvestrini)
- ASI IBISCO (Salvestrini)
- MUR PRIN 2022 Big-z (Fiore)
- INAF Grant HYPERION (Zappacosta)
- INAF Grant ARCHIE (Feruglio)

A DUSTY HIGH-Z UNIVERSE

Traina+2024

A DUSTY HIGH-Z UNIVERSE

See also Luigi's talk!

A DUSTY HIGH-Z UNIVERSE

HOT DUST OBSCURED GALAXIES

HOT DUST OBSCURED GALAXIES

W2246-0526: A CROWDED ENVIRONMENT

- **Diffuse dust emission** over several kpc, likely signature of past/ongoing mergers.
- Mergers play a key role in such dense environment, triggering both SFR and BH accretion.
- Evidence of a potential **multiphase outflow** (Bischetti+, in prep.).
- X-ray observations suggest a **deeply obscured** SMBH ($L_{2-10keV} < 10^{45}$ erg/s; Vito+2018).

Salvestrini+ in prep.

THE INTERPLAY BETWEEN SMBH & SF

- Literature works already attempt to model the SED of this extremely IR-bright object:
 - Clear dust temperature gradient, up to 110K!
 - Continuous temperature model.
 - Stellar light ($M_{\star} \sim 10^{12}~M_{\odot}$) emerges as the and AGN is deeply obscured.

SED FITTING - CIGALE

- We collect observations from UV, HST, JWST NIRSpec, WISE, Spitzer, Herschel, SCUBA2, ALMA
- We tested several combination of libraries for SFH, dust (THEMIS, DL14), AGN (SKIRTOR, Fritz+06).
- The **AGN** is deeply obscured, allowing us to probe the stellar emission.
- **SFR**~7000-11000 Msun/yr ???

RADIATIVE TRANSFER SIMULATIONS

• Radiative transfer simulations with SKIRT (Baes+2003).

 Based on the results by Di Mascia+2022 on z~6 quasars (see also Scheider+2015).

 Assumptions: SMC composition of dust; fixed dust-to-metal fraction; energy balance between the local radiation field and dust re-emission.

Salvestrini+ in prep.

WAITING FOR PRIMA

- We are using this target as a test-case for developing an approach based on radiative transfer modeling.
- PRIMA is complementary to both JWST and ALMA
- PRIMA will play a crucial role in exploring the co-evolution of SMBHs and their host galaxies at Cosmic Noon and beyond.

I) INCREASING THE STATISTICS WITH PRIMA

 $\lambda [\mu m]$

II) EVOLUTION OF DUST TEMPERATURE WITH REDSHIFT

III) DUST PROPERTIES IN THE FIRST QUASARS

- Tripodi,FS+2025, Salvestrini+2025 studied the far-IR SED emission of quasars at the Epoch of Reionization observed with ALMA.
- We fit far-IR SED with a modified black body (*Eos-DustFit* code; Tripodi,FS+2024; Salvestrini+2025):
 - T_{dust} ~55 K (Tripodi, FS+24).
 - SFR \propto L_{FIR}, but \sim 50% of L_{FIR} due to dust heated by the QSO.

IV) SMBH & HOST GALAXY COEVOLUTION?

Irrespective of redshift, SFE (SFR/M_{H2}) increases with L_{bol}: 1) QSO triggers SF in the host.

CONCLUSIONS

- Hot DOGs may be a transient and obscured phase in the global evolution of quasars, making them particularly important. However, we are lacking of far-IR observations in a key regime to constrain the relative role of SMBH accretion and star formation (Salvestrini+, in prep.).
- We need **radiative transfer simulations** to properly account for dust heating due to the presence of AGN/quasars. This is key to derive accurate measurements of dust content, SFR, dust temperature (Salvestrini+2025, A&A, 695A, 23S).
- ALMA is crucial to probe the host galaxy's ISM in high-z quasars and JWST can reveal even the population of high-z AGN at lower-luminosity.
 PRIMA will be a game changer in investigating the complex mechanism of dust heating in AGN/quasars from Cosmic Noon and beyond.
- Several scientific questions will be investigated with **PRIMA**.