Magnetic fields in prestellar cores A new perspective combining radio and infrared data

Dusting off the secrets of the Cosmos with PRIMA Space IR Telescope March 31, 2025

In collaboration with:

Marco Padovani (INAF - OAA), Daniele Galli (INAF - OAA), Stefania Pezzuto (INAF - IAPS), Alexandre Cipriani (LPENS), Alexander Drabent (TLS), Michael Kuffmeier (Niels Bohr Institute)

Andrea Bracco
IAF fellow
Osservatorio Astrofisico di Arcetri

The magnetized interstellar medium (ISM) and star formation

Messier 51 (M51) galaxy - The Whirlpool galaxy - Hubble Space Telescope SOFIA 154um (Borlaff+2021)

Keywords

STAR FORMATION

MAGNETIC FIELD vs MATTER COUPLING

IONIZATION

MULTIPHASE interstellar medium (ISM)

MULTISCALE

GALACTIC LABORATORY

Credits: NASA, ESA, S. Beckwith (STScI) and the Hubble Heritage Team (STScI/AURA)

The Galactic laboratory at the scale of molecular clouds

Star forming regions are anchored to the Galactic magnetic field that influences their dynamics

Corona Australis MC (150pc, Bracco+2020c)
See also Planck int. results XXXII, XXXVIII, XXXV 2016, Soler 2019

What happens in molecular clouds closer to star formation?

From clouds to stars: the role of prestellar dense cores

FeSt 1-457 in the Pipe Nebula, NIR data with SIRPOL

- First self-gravitating objects that undergo gravitational collapse in young stellar objects
- Dense, cold over-densities with low amount ionization, mostly from low energy cosmic rays (<1 GeV, Padovani+2009, 2011)
- What is the impact of the magnetic field in the evolution of dense/starless cores, often summarized by the massto-flux (magnetic) ratio?
- Measurements: Zeeman + dust polarization (NIR, mm) suggest field strengths spanning from tens to hundreds of uG (see reviews by Pineda+2023 and Pattle+2023)
- Large uncertainties from <u>data</u> (e.g., Zeeman obs. are challenging), and <u>methods</u> (e.g., the use of dust polarization:
 1 Davis Chandrasekhar Fermi;
 2 Dust emissivity weighting !!! a key caveat for PRIMA !!!))

The radio window on magnetized prestellar cores

ullet Cosmic ray electrons (CRe) suffer energy losses only at $N_{
m H} > 10^{25} \, {
m cm}^{-2}$ (Padovani+2018)

Given the Galactic CRe flux (e.g. Bracco+2024a) and the magnetic-field strengths (here ideal MHD applies), we expect non-thermal synchrotron radiation.

• This synchrotron emission is detectable at radio wavelength!

Synchrotron emission from dense cores before SKA prediction on single objects

Padovani & Galli 2018

Synchrotron emission from dense cores before SKA statistical approach

Dust thermal emission of Perseus (300 pc), Herschel and Planck combined (Bracco+2020b)

Bracco+2025, Pezzuto+2021: 353 prestellar, 132 protostellar

Quantifying the non detection through boot-strapping (5000 samples)

^{*}No detection at a level of 5 uJy/beam

Bracco+2025

Interpreting the non detection with mock data from analytical magnetic-field models of molecular-cloud cores Li & Shu 1996, Galli+1999, Padovani & Galli 2011, Padovani+2013

*Magneto-static, isothermal, self-gravitating, and axisymmetric cores supported by hourglass magnetic fields. Two parameters:

1) effective sound speed (turbulent+thermal) [0.17 - 0.5 km/s] Crutcher+2012

2) mass-to-flux ratio, Lr, which determines the magnetic support to gravity, Ho (Li & Shu 1996) [1.44, 2] Crutcher+2012

* CRe models from Bracco+2024

Summary

- The IR and radio windows will be essential tools to probe the multiscale magnetized universe towards star formation
- I have shown one application to the case of prestellar cores with LOFAR+Herschel (Bracco+2025)
- The radio perspective, bright with the SKAO, can help put constraints on the magnetic-field strength of prestellar cores and refine IR methods to estimate the magnetization of dense cores.
- Wait for the upcoming SKA Science Book 2025 (expected at the end of the year)

Contacts

andrea.bracco@inaf.it http://bracand.wixsite.com/cosmicogits

