

The Building Blocks of Life

Carbon Hydrogen Oxygen Nitrogen Sulfur

CHONS!

Elements found in all life on Earth

- Can form complex molecules in space
- Jumpstart life?
- Where are they when planets form?
- FIR excellent for observing CHONS

Credit: NOVA "Finding Life Beyond Earth"

Most H₂O is in ices

- H₂O ice absorption with JWST NIRSpec
- Limited to edge-on disks
- Light scatters through the disk
- Primarily probe surface
- → Difficult to constrain abundance

Sturm+23d

H₂O Ice Phonon Modes

- Lower optical depth in far-IR → Tracing bulk ice content
- Far-IR features in emission
 - Not dependent on viewing angle!
- Get:
 - Local abundance
 - Temperature
 - Ice:silicate ratio

Wavelengths: 45 µm 63 µm

R: ~300

Sensitivity: ~0.3 mJy

Nitrogen

N budget

Öberg & Bergin 21

- Nitrogen largely unconstrained in disks
 - Likely in N₂ or NH₃ (Schwarz & Bergin 14, Krijt+23)
- N₂ has no dipole moment
- Difficult to observe

N₂ Ice Phonon Modes

FIR only way access to N₂ ice

Wavelengths: 145 µm 204 µm Sensitivity: 1% wrt continuum

NH_3

- 1 detection in an outer disk (Salinas+16)
- 1 detection in an inner disk (Najita+21)
- Multiple ortho & para lines observable with PRIMA!

Bergner+, GO Book

Wavelengths: 80 – 239 µm

R: 4400

Sensitivity: 45 mJy

Sulfur: The Big Unknown

- Likely carriers: H₂S, OCS, SO, SO₂ and CS (Keyte+24)
- Trace species CS is bright

• H₂S detected in 3 disks (Phuong+18, Rivière-Marichalar

21,22)

• S carrier in comets

1₁₀ – 1₀₁ line weaker
 than FIR lines

 Strong H₂S lines at 160.7 and 233.9 μm

Measuring C, O, N, S in ices

H₂O, HCN, NH₃, N₂, H₂S, CO, CO₂, CH₃OH, H₂CO

Debris Disks vs. The Solar System

- Debris disks old(er) systems with dust belts generated by collisions
- Analogous to Kuiper Belt and Asteroid Belt
- Only see brightest disks
- Exo-Kuiper Belt T~50 K blackbody peaks in the FIR!

Gáspár+23

Deep Integrations on Debris Disks

- Emission from exo-Kuiper Belt peaks in FIR
 - No current detections
- Constrain frequency of exo-Kuiper Belts

Wavelength: 30-70 µm

Sensitivity: 22 µJy/beam

FIR Observations of Disks: more than just H₂O!

Observable	Wavelength (µm)	Frequency (THz)	R	Sensitivity
H ₂ O Ice	45 & 63	4.7 & 6.6	300	0.3 mJy
N ₂ Ice	145 & 204	1.47 & 2.0	300	1% wrt continuum
NH ₃ & H ₂ S Gas	107-524+	0.57-2.8	104	45 mJy
Exo-Kuiper Belts	30-70	4.3-10	10	22 µJy/beam

CNO at the Start of Star Formation

Phosphorous?

Disk+Envelope HD Models

CO and Gas Mass in GM Aur

- Build disk model to reproduce HD Flux & 11 CO lines
- Goal: H₂, CO, & T_{gas}
 maps in 2D

Radial Intensity Profiles: Best Fit

HD 1-0

Observed:

2.5±0.5e-18 W m²

Modeled:

2.5e-18 W m²

Results: Massive

- $M_{disk} \sim 0.2 M_{\odot}$
 - $M_{star} = 1.1 M_{\odot}$
 - $M_{gas}/M_{dust} = 290$

Results: Cold

Schwarz+MAPS 21

- 32% of mass < 20 K
- Low T_{gas} to match CO line temperatures
 - → Need high M_{gas} to match HD flux