

Unveiling the New Redshift Frontier

Breaking Dust-Redshift Degeneracies with JWST and PRIMA

Giovanni Gandolfi, University of Padua (Italy)

"Dusting Off the Secrets of the Cosmos with PRIMA Space IR Telescope"

Introduction

Very early galaxies are important to...

- Understand how galaxies **form** and **evolve** in their earliest phases
- Characterize the first population of stars in the Universe
- Characterize the growth and coevolution of supermassive black holes
- Constrain the properties of dark matter and dark energy (e.g., Gandolfi+22)

Introduction

Very early galaxies are important to...

- Understand how galaxies form and evolve in their earliest phases
- Characterize the first population of stars in the Universe
- Characterize the growth and coevolution of supermassive black holes
- Constrain the properties of dark matter and dark energy (e.g., Gandolfi+22)

Credits: NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Phill Cargile (CfA), Joseph Olmsted (STScI), S. Carniani (Scuola Normale Superiore), JADES Collaboration.

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🐟

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🚮

Selecting <u>Ultra-High-z (z>15) galaxies</u> w/ photometry:

- Color-mag NIRCam wide-band selections from mock sources (e.g., Kokorev+24, Castellano+25 in prep.)
- Dropout-based selections (F200W-dropout, e.g. Rodighiero+23, Bisigello+23, 24, 25b in prep.)

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🚮

Selecting <u>Ultra-High-z (z>15) galaxies</u> w/ photometry:

- Color-mag NIRCam wide-band selections from mock sources (e.g., Kokorev+24, Castellano+25 in prep.)
- Dropout-based selections (F200W-dropout, e.g. Rodighiero+23, Bisigello+23, 24, 25b in prep.)

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🐟

Selecting <u>Ultra-High-z (z>15) galaxies</u> w/ photometry:

- Color-mag NIRCam wide-band selections from mock sources (e.g., Kokorev+24, Castellano+25 in prep.)
- Dropout-based selections (F200W-dropout, e.g. Rodighiero+23, Bisigello+23, 24, 25b in prep.)

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🐟

Selecting <u>Ultra-High-z (z>15) galaxies</u> w/ photometry:

- Color-mag NIRCam wide-band selections from mock sources (e.g., Kokorev+24, Castellano+25 in prep.)
- Dropout-based selections (F200W-dropout, e.g. Rodighiero+23, Bisigello+23, 24, 25b in prep.)

- <u>Dusty dwarf galaxies</u> (see **Laura Bisigello's talk**)
- Strong line emitters (e.g., CEERS-93316; Donnan+22)

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🐟

Selecting <u>Ultra-High-z (z>15) galaxies</u> w/ photometry:

- Color-mag NIRCam wide-band selections from mock sources (e.g., Kokorev+24, Castellano+25 in prep.)
- Dropout-based selections (F200W-dropout, e.g. Rodighiero+23, Bisigello+23, 24, 25b in prep.)

- <u>Dusty dwarf galaxies</u> (see <u>Laura Bisigello's talk</u>)
- Strong line emitters (e.g., CEERS-93316, Donnan+22)
- Galactic objects (e.g., brown dwarfs, Holwerda+24)

No spectroscopically confirmed galaxies beyond z = 15!

Photometric z > 15 galaxies searches: Yan+23, Austin+2023, Harikane+23, Donnan+23; Pérez-González+23a, Kokorev+24, Pérez-González+25, Lovell+25 🐟

Selecting <u>Ultra-High-z (z>15) galaxies</u> w/ photometry:

- Color-mag NIRCam wide-band selections from mock sources (e.g., Kokorev+24, Castellano+25 in prep.)
- Dropout-based selections (F200W-dropout, e.g. Rodighiero+23, Bisigello+23, 24, 25b in prep.)

- <u>Dusty dwarf galaxies</u> (see <u>Laura Bisigello's talk</u>)
- Strong line emitters (e.g., CEERS-93316, Donnan+22)

F200W-dropouts selection

Catalogs using **CEERS latest DRs**, **optimized to detect faint & red sources** (F444W detection image runs)

SELECTION CRITERION

- S/N>3 in F444W
- S/N < 2 at all wavelengths ≤ 2 μm (NIRCam + HST)
- S/N < 3 in the co-added short-way NIRCam image (F090W+F115W+F150W+F200W)
- Not present in the public CEERS catalog (v.0.51)

+ not present in CEERS LRDs catalog (*Kocevski+24, Taylor+24*), no overlap with other high-z sources (*Yan+23, Finkelstein+24*) or HST-dark galaxies in CEERS (*Barrufet+23*). No NIRCam WFSS/NIRspec coverage, no CEERS MIRI coverage. NOEMA + SCUBA-2 upper limits for some sources.

→ Total: 11 new (and faint) F200W-dropouts

A case study in CEERS

Cosmic Evolution Early Release Science (CEERS) survey, covering ~90 arcmin² of the Extended Groth Strip field

GOAL-

Find and characterize previously missed F200W-dropout objects testing a setup capable of addressing degeneracies between different solutions

→ highlight promising candidate for follow-ups

Ultra High-Redshift or Closer-by, Dust-Obscured Galaxies? Deciphering the Nature of Faint, Previously Missed F200W-Dropouts in CEERS

G. Gandolfi ^{1,2} *, G. Rodighiero ^{1,2}, L. Bisigello², A. Grazian² S. L. Finkelstein⁴, M. Dickinson², M. Castellano⁶, E. Merlin⁶, A. Calabó⁶, C. Papovichi^{2,1,2}, B. Bincheni^{1,2}, E. Bañados⁶, P. Benotol^{2,2}, F. Buirago^{5,2,0}, E. Dadid^{2,5}, G. Girardi^{1,2}, M. Guitleiti³, M. Hirschmann^{2,3,3}, B. W. Holwerda^{2,6}, P. Arrabal Haro^{1,7,4}, A. Lagn^{3,3}, R. A. Lagn^{3,3}, R. A. Lagn^{3,3}, R. A. Lagn^{3,3}, R. A. Lagn^{3,3}, S. Lagn^{3,3}, S.

(Affiliations can be found after the references)

 $\mathsf{Klummer}^{(1)} \land \mathsf{Kirlpittick}^{(1)} \mathsf{D} \ \mathsf{Koccesls}^{(1)} \land \mathsf{M} \ \mathsf{Koclemer}^{(2)} \mathrel{\mathsf{E}} \mathsf{Limbusko}^{(1)} \land \mathsf{Firska}^{(1)} \mathsf{ and} \mathsf{G} \ \mathsf{Timp}^{(1)}$

Camera	Filter	$\lambda_{\rm pivot}(\mu m)$
JWST/NIRCam SW	F090W	0.9022
JWST/NIRCam SW	F115W	1.1543
JWST/NIRCam SW	F150W	1.6592
JWST/NIRCam SW	F200W	1.9886
JWST/NIRCam LW	F277W	2.7617
JWST/NIRCam LW	F356W	3.5684
JWST/NIRCam LW	F410M	4.0822
JWST/NIRCam LW	F444W	4.4043
HST/ACS	F435W	0.4329
HST/ACS	F606W	0.5922
HST/ACS	F814W	0.8046
HST/WFC3	F105W	1.0550
HST/WFC3	F125W	1.2486
HST/WFC3	F140W	1.3923
HST/WFC3	F160W	1.5370

Sample properties

F200W-dropout sample

ID	Name ⁴	RA	DEC
U-31863	BUDIARA	215.064009	52.882608
U-34120	VICIADGO	214.962236	52.827796
U-53105	-	214.958983	52.867184
U-75985	LIZZAN	214.851223	52.886427
U-80918	NASPE	214.929089	52.928587
U-100588	-	214.887376	52.797809
U-106373	-	215.005197	53.008687
U-112842	CURION	214.940860	52.907705
A-22691	ARCERIO	215.006121	52.890428
A-26130	-	215.040845	52.920593
A-76468	-	214.893779	52.936404

SED-Fitting Setup

AIM: discriminate between contaminants, test the impact of different SFHs and dust extinction laws

- BAGPIPES (Carnall+18) continuous uniform priors (logU up to -1), all SFHs, Calzetti + SMC dust exctinction, 2000 live points
- CIGALE (Boquien+19) to reveal potential AGN presence (Fritz+06 model)
- **EAZY** (*Brammer*+08) legacy templates + EAZY-Py templates + *Steinhardt*+23 high-z templates
- BDs check w/ size estimation and template fit

Bagpipes fit parameters	Prior range	nge Description	
General			
$\log M_*/M_{\odot}$	[1, 15]	Logarithmic stellar mass in solar mass units	
z	[0, 25]	Redshift	
A _v	[0, 6]	Dust attenuation index (SMC attenuation law)	
logU	[-4, -1]	Logarithmic ionization parameter	
Z	[0, 2.5]	Metallicity in solar units	
Delayed SFH			
Age _{del}	[0.1, 14]	Time since the beginning of star formation in Gyr	
T _{del}	[0.1, 14]	Time since the end of star formation in Gyr	
Exponential SFH			
Age _{exp}	[0.1, 14]	Time since the beginning of star formation in Gyr	
$\tau_{\rm exp}$	[0.1, 14]	Timescale of star formation decrease in Gyr	
Log-normal SFH			
t _{max}	[0.1, 15]	Age of the Universe at the star formation peak in Gyr	
FWHM	[0.1, 20]	Full width at half maximum star formation in Gyr	
Double powerlaw SFH			
α	[0.1, 1000]	Falling slope index	
β	[0.1, 1000]	Rising slope index	
$ au_{ m dbl}$	[0.1, 14]	Age of the Universe at turnover in Gyr	

CIGALE fit parameters	Grid values	Description
Double exponential SFH [sfh2exp module]		
Tmain	2, 6, 10	e-folding time of the mair stellar population model in Gyr
Age	1000, 2000, 5000, 10000, 13000	Age of the main stellar pop- ulation in the galaxy in Myr
SSP component [bc03 module]		
Z	0.0001, 0.004, 0.008, 0.02, 0.05	Metallicity
Nebular component [nebular module]		
log U	-4, -3, -2, -1	Logarithmic ionization pa- rameter
Dust attenuation component [dustatt_modified_CF00 module]		
Av, ism	0.1, 0.5, 1, 1.5, 2.5, 4, 5, 6	V-band attenuation in the in- terstellar medium
AGN component [fritz2006 module]		
β	-1, -0.5, 0	Dust density distribution pa- rameter
γ	0, 2, 4	Dust density distribution pa- rameter
Ψ	0.001, 50.1, 80.1	Angle between the equato- rial axis and line of sight
f _{AGN}	0., 0.1, 0.25, 0.5, 0.75	AGN fraction
Redshifting component [redshifting module]		
Z	1, 2, 3,, 25	Redshift of the source

"Curion" – a Strong Line Emitter

CURION (U-112842)

Underscoring the need of data beyond the NIR!

- z = 13 primary solution w/ NIRCam-only photometry (with lower-z secondary solutions)
- Inclusion of MIRI photometry (courtesy of The MIRI EGS Galaxy and AGN Survey (MEGA; Backhaus+25) → z = 5.5 SLE

Credits: Backhaus+25

Ultra-high-z Candidates

5 objects showing **bi-modal** solutions:

- Extreme DDs (in the M_{*} A_v plot), one could be a SLE?
- Or 15 < z < 20 galaxies! (better likelihood)

Inferred properties:

- Lower-z solutions are within 1sigma from the MS of SF galaxies
- Compatible with the R_e VS z relation by Westcott+24
- z > 15 solutions' bet-fit masses are compatible with LCDM

High-z solutions 17.32 < z < 17.8 7.63 < $\log M$./ M_{\odot} < 8.19 1.07 < Z/Z_{\odot} < 1.27 (rather unconstrained) 0.07 < A_{v} < 0.27 (compatible w/ 0) no AGN

Low-z solutions 0.91 < z < 4.31 $7.23 < \log M_*/M_\odot < 7.68$ $0.77 < Z/Z_\odot < 1.4$ $2 < A_v < 4.6$ MS galaxy, no AGN

Two Extreme Objects

2 very extreme objects – respectively an F277W and an F356W dropouts!

Will be shortly observed by the The CANDELS-Area Prism Epoch of Reionization Survey (**CAPERS**):

Cycle 3 NIRSpec program (PI M. Dickinson) targeting UDS + EGS objects

The importance of PRIMA

PRIMAger obs could help to rule out or confirm lower-z solutions for UHR galaxies with deep observations (Preliminary analysis with mock SEDs generated w/ Bagpipes)

- **UHR** (15 < z < 20) solutions should be **undetected** in all PRIMA bands
- SLEs could be detectable in both all Polarimetry Imager channels and the long-wavelength end of the **Hyperspectral Imager's** channels (or even **PHI1** for massive SLEs)
- **DDs** could be **detected** in **PPIs** and **undetected in PHIs** channels

Conclusions

- UHR (z>15) galaxy searches <u>NEED</u> to account for potential interlopers!
- PRIMA could discriminate between high-redshift objects and potential contaminants
- Expect news on our CEERS F200W-dropouts!

Conclusions (+ Bonus!)

- UHR (z>15) galaxy searches <u>NEED</u> to account for potential interlopers!
- PRIMA could discriminate between high-redshift objects and potential contaminants
- Expect news on our CEERS F200W-dropouts!

A Song For <u>PRIMA?</u> – The "<u>Dance At The Event Horizon</u>" Project

- **Disco dance music inspired by Astrophysics** w/ K. Wolz (Oxford U.) and M. Giulietti (INAF)
- Made a song for Euclid (ESA's "Cosmic Mystery" contest)
- Included in official ESA's playlists + live performance @ ESA's European Space Operations Centre for Euclid's launch

... what about PRIMA? 👀

Listen to "Cosmic Mystery"!