

Multiwavelength synergies in PRIMA Confusion Mitigation

Longji Bing

University of Sussex

PRIMA Conference, Marseille, Apr. 2025

Borja Pautasso, Seb Oliver, James Donnellan, and PRIMA confusion mitigation working group

Introduction

Confusion as the limiting factor in PRIMA continuum observations

- Fluctuations of sky background (dominated by faint sources of high density in extragalactic field) makes individual detection of sources with simple peak-finding/SNR threshold no longer robust below certain fluxes.
- Dominant limitation to detect faint sources in continuum observations of PRIMA
- Sources below the confusion limit could still be recovered by novel methods, i.e. XID+ (Hurley+2017, Shirley+2021).

PRIMA Confusion Mitigation with XID+

An exploration under maybe too ideal assumptions

- High-prior density + knowledge on prior fluxes —> ~10x improvement in limiting fluxes at PPI bands (Donnellan+2024).
- Prior list: Cut in mid-IR fluxes well below the detection limit, unlikely perfect in reality.
- More realistic priors: galaxy catalog from higher resolution surveys in other wavelengths, i.e Euclid, Roman, etc.

Any Proper Full-Wavelength Model?

Ideal: XID+ run on a single model from optical to mm

SIDES: 2deg² light cone, DM simulation + abundance matching. **Benchmark, but only in mid and far-IR, no AGN.**

SPRITZ: light cones with various depth and area, 2-point correlation optical to millimeter, incl. AGN

Catalog —> Pixelization —> Maps, SPIRE bands under HERMES depth

• For confusion mitigation, proper confusion in far-IR is our priority.

Pixelized flux histogram as a metric of comparing models and data (which is P(D) analysis based on)

Any Proper Full-Wavelength Model?

P(D): SIDES vs HERMES data

	SPIRE 250	SPIRE 350	SPIRE 500
HERMES-COSMOS	5.6 mJy/beam	6.7 mJy/beam	6.6 mJy/beam
SIDES 2 deg^2	5.6 mJy/beam	6.4 mJy/beam	6.2 mJy/beam

SIDES:
Well reproduced
confusion at all
SPIRE bands

Confusion level from standard deviation of maps after iterative 5σ clipping (Bethermin+24)

Any Proper Full-Wavelength Model?

P(D): SPRITZ vs HERMES data

	SPIRE 250	SPIRE 350	SPIRE 500
HERMES-COSMOS	5.6 mJy/beam	6.7 mJy/beam	6.6 mJy/beam
SIDES 2 deg^2	5.6 mJy/beam	6.4 mJy/beam	6.2 mJy/beam
SPRITZ (SPICA-DS)	4.9 mJy/beam	5.7 mJy/beam	5.6 mJy/beam

SPRITZ:
Underestimated
confusion at all
SPIRE bands

Constructing A Full-Wavelength Model

SIDES x SPRITZ on SFR/M* plane

Assigned optical-IR flux + Survey depth —> Source could be detected in optical-IR surveys

Constructing A Full-Wavelength Model

Optical-IR number counts reproduced

Overproduction of bright sources at ~19 m_{AB} . Good consistency at the faint end (>24 m_{AB}).

Acceptable for selecting flux-limited priors mimicking Roman/Euclid deep field catalogs (>26 m_{AB}).

A frame work with NIR position priors from a Roman-like survey

Detected source catalog —> "non-negligible" source to PRIMA data as XID+ priors https://asd.gsfc.nasa.gov/roman/wps_2023/files/022_Yung_HLWAS.pdf

Performance of XID+ with Roman near-IR priors

- Limiting flux following the definition in Donnellan+24
- An order of magnitude improvement at PPI1 if we have some unbiased knowledge (1σ) on flux, match to Donnellan+24 using an ideal prior list.
- Sensitive to the knowledge on flux. High density (3.5 source/beam at PPI-1) + flat flux prior worsen the results.

Alternative position priors from radio surveys, i.e. <u>SKA-mid</u>

Source properties in SIDES —> detectable radio sources in SKA as XID+ priors

Do not rely on the framework assigning optical-IR fluxes from SPIRTZ to SIDES sources

Performance of XID+ with <u>SKA-mid</u> radio priors

- Limiting flux following the definition in Donnellan+24
- An order of magnitude improvement at PPI1 if we have some unbiased knowledge (1σ) on flux, match to Donnellan+24 and Roman priors.
- At a lower source density (2 per beam at PPI-1), better than advanced blind detection method with flat flux prior in most bands

Conclusion

- In addition to source number counts, evaluation of far-IR mocks should also pay attention to the comparison between observed and simulated sky maps in 2D.
- PRIMA flux measurement down to an order of magnitude deeper that classical confusion is possible with XID+ and sources catalogs from near-IR surveys like Roman, if we could have a rough but unbiased knowledge on their mid and far-IR fluxes.
- Prior catalogs from deep radio continuum surveys of, i.e. SKA-mid, show a similar performance as near-IR prior catalogs in improving faint source flux measurement under XID+ framework, indicating their promising potential of synergy with PRIMA.

Number Counts: SFR/M* matching

Lack of starburst in SPRITZ template.

Overproduction of sources with AGN templates?

Removing a few AGN-dominated templates improves bright end number counts, but....