

PRIMA: « Cosmology » with diffuse Cosmic IR and line backgrounds

G. Lagache

Laboratoire d'Astrophysique de Marseille

Dusty off the secrets of the COSMOS with PRIMA 31 March - 2 April 2025

Extragalactic-source confusion: our « business »

In the far-IR and submm, galaxies are so faint and numerous, compared to the angular resolution achievable, that confusion plagues observations substantially.

CIB: Cumulative far-IR emission from all galaxies throughout cosmic history (all z)

Extragalactic-source confusion: our « business »

Cutouts (18 arcmin²) of simulated PRIMAger noiseless maps produced by SIDES

Extragalactic Background Light: Inventory of light throughout the cosmic history

High level of
obscured
SFR density
(Gispert+00 for the
first « inversion » of
CIB into SFRD)

No zero level => CIB anisotropies

CIB anisotropies: 2D intensity mapping

Intensity mapping: basic idea

Intensity mapping (confusion-limited surveys)

Intensity mapping:

- measure angular fluctuations in the brightness of the sky at a particular frequency
- naturally sensitive to the radiation from faint sources and from the diffuse intergalactic medium
- basic tool: angular power spectrum; intensity fluctuations are used to reconstruct the power spectrum of matter fluctuations

CIB anisotropies: power spectrum

CIB anisotropies: obscured SFRD

Need a model to link the darkmatter- CIB emissivities (linear clustering at large scale).

The model depends on the cosmology and halo-baryon connexion.

CIB from Planck: most efficient mass halo

Mass of the dark matter halos hosting the galaxies contributing to the CIB as a function of redshift

For z > 2.5 $M_h(z = 0) > 10^{13.5} M_{\odot}$ Progenitors of clusters

For
$$0.3 < z < 2.5$$

 $10^{12.5} < M_h(z=0) < 10^{13.5} M_{\odot}$
Groups

For z < 0.3
$$10^{12} < M_h(z=0) < 10^{12.5} M_{\odot}$$
 Milky Way like halos

Tomographic cross-correlation between the CIB and galaxy samples

Cross-correlation between KiDS galaxies (30 millions) and CIB.

Significance of 43 σ (even if only low redshift)

Maximum star formation efficiency of $\eta_{max} = 0.41$ (efficiency of converting the accreted baryons into stars)

CIB background and cross-correlations

CIB is contaminated (foreground and background) and interpretation is model-dependent => cross-correlations

- Learn on the CIB, galaxy formation & evolution
 - CC with LRGs (z<1, Serra+14)
 - CC with SDSS QSOs at 0<z<5 (Schmidt+15)
 - CC with NIR Background (Thacker+14)
 - CC with MaxBCG galaxy clusters at 0.1 < z < 0.3 (Hincks+13)
 - CC with UnWiSE galaxies (Ziang+24)
 - CC with KiDS galaxies (Yan+22)
 - CC with tSZ (predicted Addison+12, measured Planck collaboration 2015 XXIX)
 - * CC with cosmic shear (from Dark Energy Survey and Kilo-Degree Survey: Jego+23)
- Learn on Cosmology:
 - CC with CMB for dark energy, through ISW (Ilic+11, Maniyar+18)
 - CC with CMB Lensing for local non-Gaussianities in the initial conditions of the Universe, fNL (McCarthy+23)

Quest for CMB B-modes

Inflation predicts the existence of a stochastic background of gravitational waves that then induce a specific "B-mode" pattern in the polarization of the CMB

Quest for CMB B-modes

Distribution of dark matter deflects CMB light that passes through! Gravitational lensing converts E- to B- polarization

CIB in the CMB B-mode quest

- Use CIB Anisotropies as an integrated mass tracer
 - CC with the lensing map (Song+03, Holder+13, Planck collaboration XVIII 2013, Cao+20)
 - Delensing: Sherwin & Schmittfull 15, Simard+15; first detection of lensing B-mode: Hanson+13

Figure 4. A zoom-in of a 900 deg² region of the ACT DR6 mass map shown as the Wiener-filtered gravitational potential (related to the convergence through $\nabla^2 \phi = -2\kappa$). The distribution of dusty galaxies constituting the CIB measured by Planck is overlaid as contours. The overdensities in red correspond well with the bright/white mass-dominated regions of the mass map, and the underdensities in blue correspond well with the darker mass-devoid regions.

PRIMA and CIB anisotropies

- PRIMA: short wavelength w.r.t. ground based CMB data experiments,
 Planck, and Herschel/SPIRE
 - * Access to lower redshift ($z \lesssim 1$)
 - * Ratio CIB/Galactic dust less favorable than at longer wavelengths
 - Constraining power of such analysis is limited by current Galactic dust cleaning techniques => will be even more critical fro PRIMA

- * Compared to Herschel/SPIRE surveys:
 - new and larger area with a high overlap with current very large surveys (DESI/ACT/SPT-3G/SO)

=> An « all-sky » survey at ~confusion with PPI mandatory Wright+23, all sky, 5000 hours Burgarella+25, πIR, 2000 hours CIB anisotropies are a very good LSS tracer but redshift distribution not so well-known

Line (3D) intensity mapping

Line intensity mapping

Line Intensity mapping

z = 25

HI

HI: Cosmic Dawn + Reionization + BAOs

CO: Galaxy evolution (z~2-3) + BAOs

[CII]: Reionization + galaxy evolution

 $H\alpha$: Galaxy evolution + BAOs

Ly α : Reionization + IGM + galaxy evolution

PRIMA and LIM

Lines and redshift range (from rest-frame 29-230 microns):

[NeII] 12.81	[NeIII] 15.55	H2 17.03	[SIII] 18.71	[OIV] 25.89	[SIII] 33.48	[SiII] 34.82	[OIII] 51.81	[OI] 63.18	[OIII] 88.36
μm	μm	μm	μm	μm	μm	μm	μm	μm	μm
1.3-17	0.9-14	0.7-13	0.6-11	0.1-8	0-6	0-6	0-3.4	0-2.6	0-1.6

Spectral resolution for LIM: R~100 (at least)

PRIMA and LIM

From Yun-Ting Chen (PRIMA GO science Book 2023) 1000 arcmin² survey with 1000 hours of total integration time

PRIMA and LIM

Table 1: Power spectrum SNR shown in Fig 2. Cases with SNR > 5 are highlighted in red.

line name/z	z=1	z=2	z=3	z=4	z=5	z=6
[NeII] 12.81 μm	7.9	4.0	1.0	0.3	0.1	0.1
[NeIII] 15.55 μm	10.0	19.7	15.3	6.9	6.4	2.8
H2 17.03 μm	9.8	15.3	7.7	6.4	2.5	1.0
[SIII] 18.71 μm	6.9	2.7	0.6	0.5	0.1	0.1
[OIV] 25.89 μm	6.5	2.3	1.5	0.4	0.3	0.1
[SIII] 33.48 μm	8.9	12.0	4.9	3.6	1.1	0.4
[SiII] 34.82 μm	9.8	19.5	22.9	12.2	5.0	1.9
[OIII] 51.81 μm	5.5	3.5	0.7	_	_	_
[OI] 63.18 μm	19.8	18.1	_	_	_	_
[OIII] 88.36 μm	9.9	_	_	_	_	_

SNR at large scales: 0.1 ~1 h/Mpc (Not taking into account continuum emission contamination, line confusion)

From Yun-Ting Chen (PRIMA GO science Book 2023) 1000 arcmin² survey with 1000 hours of total integration time

Polarised CIB anisotropies

Extragalactic-source confusion: our « business »

Cutouts (18 arcmin²) of simulated PRIMAger noiseless maps produced by SIDES

PRIMA and Polarised CIB anisotropies

PRIMA and Polarised CIB anisotropies

Polarisation directions of individual galaxies could be aligned with tidal fields around galaxies?

Cross-correl with galaxies (directional stacking): polarisation degree of galaxies?

Background for Galactic polarisation and foreground for CMB B-modes

CMB B-mode contamination by polarised Xgalactic sources

- In addition to instrumental challenges, future experiments targeting r $\sim 10^{-3}$ will have to solve the critical problem of component separation.
- A lot of effort: lensing + polarised Galactic foregrounds
- Investigate the polarisation fluctuations caused by extragalactic contaminants:
 radio galaxies and dusty star-forming galaxies
 - $\langle \Pi | R \rangle = 1.4\%$ for DSFGs
 - $\langle \Pi rad \rangle = 2.8\%$ for radio
- Ignore the intrinsic alignments between the integrated polarization angles of galaxies
- => Polarised extragalactic foregrounds cannot be ignored even at the large scale (ell<150) where the primordial B-modes are the brightest

CMB B-mode contamination by polarised Xgalactic sources

CONCLUSIONS

CIB anisotropies (2D intensity mapping)

- Dark-matter halos / baryons connexion
- * Tracer of LSS
- Foreground/Background
- * PRIMAGER: An « all-sky » survey (at confusion)

* LIM (3D intensity mapping)

- * Trace star formation activities, black hole growth, the dust and metallicity content (e.g., ionized oxygen and silicon) up to z~3
- * FIRESS: at least 1000 arcmin² survey with 1000 hours

* Polarised CIB anisotropies (2D intensity mapping)

- * Space of discoveries!
- * PRIMAGER: An « all-sky » survey (inst. noise dominated)