Crystals in the interstellar medium of galaxies

Ciska Kemper (ICE-CSIC/IEEC/ICREA)

Astromineralogy: a record of dust processing

Composition
Stoichiometry
Crystallinity
Grain shape
Grain size

Dust remembers, gas forgets

Silicates are the main constituent of interstellar dust

Amorphous versus crystalline silicates

Observing crystalline silicates in the IR

Space-based infrared spectroscopy is great for astromineralogy

Crystallization is a thermal process

Glass temperature T_{glass} ~1100 K for silicates

 $(T_{evaporation} \sim 1500 K)$

T_{condensation} > T_{glass}: atoms in mineral are mobile, **crystallization** occurs

T_{condensation} < T_{glass}: immediate freeze out → **amorphous** silicate

(Fabian et al. 2000)

Amorphous silicates will anneal (become crystalline) when heated above T_{glass}

Amorphization is a non-thermal process

(Zhai et al. 2019₎

Bringa et al. 2007)

(Brucato et al. 2004)

The absence of crystalline silicates in the ISM

The absence of crystalline silicates in the ISM

(Kemper et al. 2004, 2005)

The absence of crystalline silicates in the ISM

Kemper et al. 2004, 2005)

ISM silicates are (almost) completely amorphous

Dense sightlines

Mostly amorphous
With very few exceptions

(Poteet et al. 2011)

Crystalline silicates in other galaxies

Despite the absence of crystalline silicates in our local ISM, crystalline silicates appear to be common in active, star-forming, galaxies

The record holder: 95% crystallinity

~100 heavily obscured AGN: almost all have non-zero crystallinities, up to 14%

(Tsuchikawa et al. 2021, 2022)

Mining the Spitzer archive: ~25% of ~3300 galaxies with z<4 show crystallinity

(Spoon et al. 2022)

The starburst model

$$\begin{cases} \frac{dM_{X}}{dt} = x_{*}D(t) - k_{1}M_{X} + k_{2}M_{A} - k_{3}M_{X} + F_{x}(t) \\ \frac{dM_{A}}{dt} = (1 - x_{*})D(t) + k_{1}M_{X} - k_{2}M_{A} - k_{4}M_{A} + F_{a}(t) \end{cases}$$

(Kemper et al. 2011)

The starburst model

Initial silicate mass: 10⁸ M_o SFR: 1000 M_o yr⁻¹

 $x^* = 0.2$

Dust-to-gas ratio: 0.01

⇒ crystallinity ~10 %

Crystalline silicates in AGN

Pier & Krolik 1992)

Crystalline silicates in AGN

Amorphous

Silicates

Crystalline

Silicates

Oxides

Mass fraction (%)

What is currently happening with JWST? Circumstellar dust

What is currently happening with JWST? Interstellar dust

(Zeegers et al. submitted)

(Rich et al. 2023)

Long wavelength silicate features: 33, 43, 69 micron

Distinction from nanosilicates

Long wavelength silicate features: 33, 43, 69 micron

Distinction from nanosilicates

Long wavelength silicate features: 33, 43, 69 micron

Distinction from nanosilicates

Fe²⁺ incorporation

2.5

| Value | 205 K | 1 | 205 K | 205 K

Long wavelength silicate features: 33, 43, 69 micron

Distinction from nanosilicates

Fe²⁺ incorporation

'Molster et al. 200.

Ices, carbonates

(Kemper et al. 2002

Redshifted interstellar dust

The 10 micron feature is not observable at z>2

PRIMA can observe long wavelength mineralogy

(Matsuura et al. in prep.)

PRIMA can observe redshifted crystals

(da Cunha 2022)

PRIMA is extremely well-suited to study dust mineralogy at cosmic noon and beyond

Observing crystals at cosmic noon

100 galaxies of 10^{13} L_o at 1.6 < z < 4 30 galaxies of 10^{12} L_o at z < 2

The crystalline fraction provides information on:

Star formation, shocks, cosmic rays, heating and cooling

• PRIMA is first opportunity since ISO to do far-infrared spectroscopy

- PRIMA is first opportunity since ISO to do far-infrared spectroscopy
- Astromineralogy: crystalline silicates, ices, carbonates

- PRIMA is first opportunity since ISO to do far-infrared spectroscopy
- Astromineralogy: crystalline silicates, ices, carbonates
- Dust provides a record of physical conditions:
 - Thermal processing for crystalline silicates
 - Cosmic ray hits for amorphization
 - o In general: different minerals form under different conditions

- PRIMA is first opportunity since ISO to do far-infrared spectroscopy
- Astromineralogy: crystalline silicates, ices, carbonates
- Dust provides a record of physical conditions:
 - Thermal processing for crystalline silicates
 - Cosmic ray hits for amorphization
 - o In general: different minerals form under different conditions
- Circumstellar and interstellar mineralogy to understand dust formation

- PRIMA is first opportunity since ISO to do far-infrared spectroscopy
- Astromineralogy: crystalline silicates, ices, carbonates
- Dust provides a record of physical conditions:
 - Thermal processing for crystalline silicates
 - Cosmic ray hits for amorphization
 - o In general: different minerals form under different conditions
- Circumstellar and interstellar mineralogy to understand dust formation
- PRIMA allows for astromineralogy at cosmic noon for the first time
 - Baryonic cycle: star formation, dust formation, processing, shocks,
 cosmic ray fluence, ...